

<u>«Национальный исследовательский</u> <u>Московский государственный строительный университет»</u> Научно-образовательный центр «Геотехника»

Преобразование слабых водонасыщенных оснований грунтовыми сваями

Руководитель НОЦ «Геотехника», к.т.н.

Тер-Мартиросян Армен Завенович

Научный сотрудник НОЦ «Геотехника», к.т.н. Сидоров Виталий Валентинович

Проблема уплотнения слабых оснований и определения приведенных характеристик уплотненного композитного массива

- 1. Слабые основания, в том числе водонасыщенные, а также основания, содержащие слабые прослойки (торф, ил, глинистые грунты в текучей консистенции) могут быть уплотнены путем устройства в массиве колонн из более прочного и менее деформируемого материала (песок, щебень, грунтоцемент) с соответствующим его уплотнением.
- 2. При этом возможно как простое усиление массива грунта колоннами с определенным шагом (без изменения свойств окружающего их грунта), так и полное изменение свойств последнего путем создания больших радиальных напряжений в уплотняемом массиве.
- 3. Такие колонны могут быть устроены по различным технологиям: виброфлотации, послойного втрамбовывания, по технологии струйной цементации и т.п.
- 4. Для всех рассматриваемых случаев проектировщику необходимо значение приведенного модуля деформации преобразованного композитного основания для расчета осадки.

Устройство колонн уплотнения из щебня или песка путем втрамбовывания материала

Подготовка, подача ПГС щебня и бетона Образование скважины в грунте путем сбрасывания трамбовки

Подача ПГС, щебня или бетона в скважину и уплотнение грунта при сбрасывании трамбовки

Основные технологии устройства усиления

Устройство щебеночных свай с верхней подачей щебня

Устройство щебеночных свай с нижней подачей щебня

Установка с рабочим органом: виброфлотом

Основные технологии устройства усиления

Устройство грунтоцементных колонн с помощью струйной технологии

Установка для устройства грунтоцементных свай по технологии **Jet grouting**

Принципиальная схема технологии Jet 1

Принципиальная схема технологии **Jet 2**

Пульпа

Струя цем. р-ра

в воздуш.

потоке

E1, C1

 E_2, C_2

 (а) (б) (в) (г) Схематическое представление глубинного уплотнения слабого водонасыщенного грунта и устройства песчано- гравелистой сваи дрены по различным технологиям: а - глубинной трамбовки; б шнеком; в - задавливанием; г - ротором

E1, C1

 E_{2}, C_{2}

E1, C1

 E_2, C_2

E1, C1

E2, C2

Уравнение **равновесия** для элементарного объема записывается в виде:

$$\sigma_r - \sigma_{\theta} + r \frac{d\sigma_r}{dr} = 0$$

с и

где *r* – расстояние от оси симметрии скважины.

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^2} = 0$$

где *и* – перемещение в радиальном направлении.

Зависимость между напряжениями и перемещениями:

Схема расширения лидирующей скважины в процессе изготовления сваи

Общее решение уравнения (3.2) записывается в виде:

 $u = Ar + \frac{B}{r}$

 $\begin{cases} u(r=r_1) = u_{\kappa} \\ u(r=r_2) = 0 \end{cases}$

где *А*, *В* – постоянные интегрирования, определяемые из граничных условий:

где r_{l} – радиус скважины; r_{2} – радиус зоны влияния; u_{κ} – расширение радиуса скважины

 $u_{\kappa} = r_{\kappa} - r_{1}$ r_{κ} – радиус сваи после расширения скважины.

$$A = \frac{u_{\kappa}r_{1}}{r_{1}^{2} - r_{2}^{2}} \quad B = -\frac{u_{\kappa}r_{1}r_{2}^{2}}{r_{1}^{2} - r_{2}^{2}} \qquad \longrightarrow \qquad u(r) = \frac{u_{\kappa}r_{1}}{r_{1}^{2} - r_{2}^{2}}(r - \frac{r_{2}^{2}}{r})$$

Используя (3.3), определим напряжения в грунтовом массиве:

$$\sigma_{r}(r) = \frac{E}{1 - v^{2}} \frac{u_{\kappa} r_{1}}{r_{1}^{2} - r_{2}^{2}} \left[1 + v + \frac{r_{2}^{2}}{r^{2}} (1 - v) \right]$$

$$\sigma_{\theta}(r) = \frac{E}{1 - v^{2}} \frac{u_{\kappa} r_{1}}{r_{1}^{2} - r_{2}^{2}} \left[1 + v - \frac{r_{2}^{2}}{r^{2}} (1 - v) \right]$$

$$\sigma_{r}(r) - \sigma_{\theta}(r) = \frac{4G \cdot u_{\kappa} r_{1} r_{2}^{2}}{\left(r_{1}^{2} - r_{2}^{2}\right) r^{2}}$$

Ввиду того, что расширение радиуса скважины u_{κ} соизмеримо с радиусом самой скважины r_1 необходимо рассчитать напряжения σ_r и σ_{θ} с помощью разбиения конечного перемещения u_{κ} на *n* шагов. Таким образом, разбивая величину расширения скважины u_{κ} на *n* шагов и совершая определенные преобразования, определим конечные напряжения на контакте свая–грунт в виде суммы напряжений каждого из последовательных шагов.

си

$$\sigma_{r} = \frac{E \cdot u_{n}}{1 - \nu^{2}} \sum_{i=1}^{n} \frac{r_{1,i}^{2} (1 + \nu) + r_{2}^{2} (1 - \nu)}{(r_{1,i}^{2} - r_{2}^{2}) r_{1,i}}$$

$$\sigma_{\theta} = \frac{E \cdot u_{n}}{1 - \nu^{2}} \sum_{i=1}^{n} \frac{r_{1,i}^{2} (1 + \nu) - r_{2}^{2} (1 - \nu)}{(r_{1,i}^{2} - r_{2}^{2}) r_{1,i}}$$

где n – количество шагов разбиения; $r_{1,i}$ – радиус скважины в i-ый шаг; u_n – расширение радиуса скважины за один шаг

$$u_n = \frac{u_\kappa}{n}$$

Причем радиус скважины каждого последующего шага $r_{1,i+1} = r_{1,i} + u_n$

Так при расширении скважины радиусом r1=0.2 м на uk=0.06 м при модуле деформации грунта E=15 МПа, коэффициенте Пуассона v=0.3 и радиусе влияния r2=1 м согласно (3.4) и (3.5) на контакте свая-грунт возникают радиальные напряжения σr=-3.33 МПа и тангенциальные напряжения σθ=3.19 МПа.

Учет упрочнения грунта в виде возрастания модуля деформации *E* на каждом шаге разбиения

$$E_i = E \cdot i$$

$$\sigma_r = \frac{u_n}{1 - v^2} \sum_{i=1}^n \frac{E_i \cdot r_{1,i}^2 (1 + v) + E_i \cdot r_2^2 (1 - v)}{(r_{1,i}^2 - r_2^2) r_{1,i}}$$

$$\sigma_{\theta} = \frac{u_n}{1 - v^2} \sum_{i=1}^n \frac{E_i \cdot r_{1,i}^2 (1 + v) - E_i \cdot r_2^2 (1 - v)}{(r_{1,i}^2 - r_2^2) r_{1,i}}$$

$$\sigma_m = \frac{u_n}{1 - \nu} \sum_{i=1}^n \frac{E_i \cdot r_{1,i}}{(r_{1,i}^2 - r_2^2)}$$

10

ССПЕЛОВАТЕЛЬСКИЙ

Учет релаксации напряжений грунтов после расширения скважины

Для описания процесса релаксации в диссертации используется уравнение Максвелла в виде:

$$\dot{\gamma}_i = \frac{\tau_i}{\eta(t)} + \frac{\dot{\tau}_i}{G}$$
$$\dot{\gamma}_i = \frac{2}{\sqrt{3}} (\dot{\varepsilon}_r + \dot{\varepsilon}_{\theta}) \qquad \tau_i = \frac{\sigma_r - \sigma_{\theta}}{\sqrt{3}} = \frac{4}{\sqrt{3}} G u_{\kappa} \sum_{i=1}^n \frac{r_2^2}{(r_{1,i}^2 - r_2^2) r_{1,i}}$$

Учитывая, что u = const, и $\sigma_r - \sigma_{\theta} = S$ получаем уравнение вида:

$$\frac{S}{\eta(t)} + \frac{\dot{S}}{G} = 0$$

 $\eta(t) = \eta_0 e^{\alpha t}$ где α – параметр упрочнения.

$$S(t) = S_0 \exp\left\{\frac{G}{\eta_0 \alpha} (e^{-\alpha t} - 1)\right\}$$
$$S_0 = \sigma_{r0} - \sigma_{\theta 0}$$

Расстояние от поверхности сваи, r

График зависимости *S*(*r*) – напряжения в начальный момент времени после расширения скважины, *St*(*r*) – остаточные напряжения после релаксации

Учет консолидации грунтов при расширении скважины

При принудительном расширении лидирующей скважины в окружающем водонасыщенном грунте возникает избыточное поровое давление:

$$\sigma_m = \left(\left(\sigma_z + \sigma_{\Theta} \right) \left(1 + \nu_u \right) \right) / 3 \qquad u_w(r, 0) = \sigma_m(0) \beta_0$$

Это избыточное поровое давление будет рассеиваться во времени в соответствии с уравнением осесимметричной консолидации в условиях плоской деформации

$$\frac{\partial \overline{u}_{w}}{\partial t} = c_{r} \left(\frac{\partial u_{w}}{\partial r^{2}} + \frac{1}{r} \frac{\partial 2u_{w}}{\partial r^{2}} \right)$$

Решение этого уравнения при $\beta_0=1$ получено Р.А. Барроном и имеет вид:

$$u_{w}(r,t) = \frac{p}{f(n_{1})} e^{\frac{-2T_{z}}{f(n_{1})}} \left(\ln \frac{r}{r_{1}} - \frac{1}{2n_{1}^{2}} \left(\frac{r^{2}}{r_{1}^{2}} - 1 \right) \right)$$

$$n_1 = \frac{r_1}{r_2}; \quad T_r = \frac{c_r t}{4r_2^2}; \quad f(n_1) = \frac{n_1^2}{n_1^2 - 1} \ln n_1 - \frac{3n_1^2 - 1}{4n_1^2}; \quad c_r = \frac{k_r}{\gamma_w m_v}.$$

16

На основе решения Баррона Р.А. получено решение влияния скорости нагружения уплотняемого слоя p(t):

$$p(t) = p \left[1 - \exp(-\alpha_1 t) \right]$$

$$u_{w}(r,t) = \frac{p\alpha_{1}}{(\omega - \alpha_{1})f(n_{1})} \left\{ \ln \frac{r}{r_{1}} - \frac{1}{2n_{1}^{2}} \left(\frac{r^{2}}{r_{1}^{2}} - 1 \right) \right\} \left(\exp\left[-\omega t\right] - \exp\left[-\alpha_{1}t\right] \right) \quad (3.10)$$

$$\omega = \frac{2}{Fc_{n_1}} \cdot \frac{c_r}{r_2^2}$$

Из этого решения следует, что при начальном значении порового давления $u_w(0,r) = 0$

и при заданном росте p(t) с затухающей скоростью согласно (3.9) получаем экстремальное развитие избыточного порового давления во времени (3.10). Причем при $\alpha << \omega$ не возникает избыточное поровое давление, т.е. $u_w(0,r) \rightarrow 0$

Тогда осадку сваи можно определить по формуле:

$$S_{c}(t) = \sigma_{c}(t)m_{c}l = \left[\frac{p}{\omega} - \sigma_{e}^{*}\left(1 - e^{-\alpha t}\right)\frac{1 - \omega}{\omega}\right]m_{c}l$$

Графики изменения порового давления в окружающем грунте на радиусе $r=r_2$ при $\sigma_e(t) = \sigma_e = \text{const}$ $\sigma_e(t) = \sigma_e^* \left(1 - e^{-\alpha t}\right)$

а также изменение осадки ростверка во времени.

Изменение порового давления в окружающем грунте на радиусе $r=r_2$ при $\sigma_{z}(t) = \sigma_{z}(0) = \text{const}$ (1) $\sigma_{z}(t) = \sigma_{z}^{*}(1 - e^{-\alpha t})$ (2) Изменение осадки ростверка во времени с учетом переменности нагрузки на окружающий грунт $\sigma_c(t)$, на сваю $\sigma_c(t)$

- ИССЛЕДОВАТЕЛЬСКИЙ У НИВЕРСИТЕТ М ИССИ ИССИТЕТ М ИССИ
- 1. При нагружении композитного основания, состоящего из колонн уплотнения и уплотненного грунта вокруг них, преобразованный массив будет работать совместно.
- 2. Осадка колонны уплотнения может быть **больше**, чем окружающего грунта на уровне нижнего конца колонн. То есть может происходить так называемое **продавливание нижнего слоя**, величина которого зависит от деформационных характеристик массива грунта под подошвой колонн.
- 3. Колонна относительно сжимаема и на уровень ее подошвы передается максимум 20% от нагрузки на оголовке (эффект падения напряжения в стволе свай в зависимости от жесткости и длины рубежом, России подтвержден давно известен И 3a Β многочисленными опытными данными и имеет теоретическое обоснование).

Расчет модуля деформации Е щебеночной колонны и определение приведенного модуля деформации композитного преобразованного основания (ячейки)

Рис.7 Расчетная схема для определения приведенного модуля ячейки уплотненного слоя грунта толщиной

l = *l*_c при G₂>>G₁ $G_2 >> G_1$

- где G₂ модуль сдвига грунта под подошвой щебеночной колонны;
 - G₁ модуль сдвига грунта над подошвой щебеночной колонны;

В соответствии с представленной схемой можно записать основные уравнения, описывающие связь напряжений и перемещений в расчетной ячейке между собой:

а) уравнение равновесия:

$$p = \sigma_c \cdot \frac{a^2}{b^2} + \sigma_2 \cdot \left(1 - \frac{a^2}{b^2}\right)$$

где σ_c - напряжение в стволе щебеночной колонны, кПа;

- σ_г напряжение в грунте на уровне подошвы колонны, кПа;
- р внешняя равномерно-распределенная нагрузка на штамп, кПа;

б) осадка грунта:

 $S_{2} = \sigma_{2} \cdot m_{2} \cdot l$ где m_{2} - коэффициент относительной сжимаемости грунта, кПа⁻¹;

$$m_{2} = \frac{\beta}{E_{2}}$$

в) осадка щебеночной колонны:

$$S_c = \sigma_c \cdot m_c \cdot l$$

национальный исследовательский университет МИСИ

где *m*₂ - коэффициент относительной сжимаемости щебеночной колонны, кПа⁻¹;

г) равенство вертикальных перемещений на уровне подошвы плиты:

$$S_c = S_c = S_m$$

S_m – вертикальное перемещение расчетной ячейки в целом на уровне низа плиты ростверка.

Используя данные выражения и произведя необходимые преобразования, получим выражение для определения коэффициента относительной сжимаемости расчетной ячейки в целом:

$$\overline{m} = \frac{m_c \cdot m_2}{m_2 \cdot \lambda + m_c (1 - \lambda)}$$
 где $\lambda = \frac{a^2}{b^2}$

Исходя из выражения (8.7) можно определить приведенный модуль деформации всей расчетной ячейки (композитного массива, состоящего из щебенистой колонны и окружающего грунта): $\overline{E} = \beta / \overline{m}$ $\overline{E} = \omega E_c + (1 - \omega) E_c$

Также из полученного решения можно записать выражения для нахождения напряжений в стволе колонны и в окружающем грунте:

$$\sigma_{z} = \frac{p \cdot m_{c}}{m_{z} \cdot \lambda + m_{c}(1 - \lambda)} \qquad \sigma_{c} = \frac{p \cdot m_{z}}{m_{z} \cdot \lambda + m_{c}(1 - \lambda)}$$

Учет упругопластических свойств грунтовой колонны

Из анализа (5.9) и решения НДС ячейки следует, что грунтовая колонна несет значительную часть нагрузки от ростверка. Следовательно, возникает необходимость определения его НДС с учетом упруго-пластических свойств аналитическим методом.

В условиях трехосного сжатия, в котором находится грунтовая колонна, нелинейную продольную деформацию ее можно определить на основе уравнения **Генки**, т.е. имеем:

$$\varepsilon_{z1} = \chi(\sigma_{z1} - \sigma_m) + \varepsilon_m$$

 $\mathcal{E}_m \sigma_m$ - средняя объемная деформация и среднее напряжение, соответственно, причем:

$$\chi = \gamma_i / 2\tau_i \quad \varepsilon_m = \sigma_m / K$$

В качестве расчетной для описания упруго-пластической деформации примем модифицированное уравнение Тимошенко в виде:

$$\gamma_i = \frac{\tau_i}{G^e} \frac{\tau_i^*}{\tau_i^* - \tau_i}$$

 $\overline{\tau}_i \quad \tau_i^*$

интенсивности действующих касательных напряжений и её предельное значение, соответственно.

22

 $\tau_i^* = \sigma_m \cdot tg \,\varphi_i + c_i$

$$\tau_i = \frac{\sigma_1 - \sigma_2}{\sqrt{3}} \qquad \qquad \sigma_m = \frac{\sigma_1 + 2\sigma_3}{3}$$

Из (5.13) можно определить:

$$\chi = \frac{1}{2G^e} \frac{\tau_i^*}{\tau_i^* - \tau_i}$$

$$\sigma_{r2} = \sigma_3 \longrightarrow \tau_i = \frac{\sigma_{z1}}{\sqrt{3}} - \frac{E_2 \cdot A \cdot 2}{(1 + v_2) \cdot v_2'} + \frac{\sigma_{z2} \cdot \xi_2}{(1 + v_2) \cdot v_2'}$$

Деформацию окружающего грунта определим исходя из линейной зависимости:

$$\varepsilon_{\mathcal{Z}} = \left(\frac{p}{1-\omega} - \sigma_{z1}\frac{\omega}{1-\omega}\right)m_{\mathcal{Z}}$$

С другой стороны:

$$\varepsilon_{z1} = \frac{1}{G^e} \frac{\tau_i^*}{\tau_i^* - \tau_i} (\sigma_{z1} - \sigma_m) + \frac{\sigma_m}{K}$$

В случае когда материал грунтовой сваи обладает только трением (c = 0) и когда в состоянии близком к предельному можно пренебречь объемными деформациями:

$$\frac{1}{G^{e}}\frac{\tau_{i}^{*}}{\tau_{i}^{*}-\tau_{i}}(\sigma_{z1}-\sigma_{m})+\sigma_{z1}\cdot\frac{\omega}{1-\omega}m_{2}=p\frac{\omega}{1-\omega}m_{2}$$

Нагрузка р (кН/м²)

График зависимости осадки от нагрузки р

«относительная нагрузка – деформация»

Определение приведенного модуля деформации композитного преобразованного основания с возможностью продавливания основания под подошвой щебеночной колонны

 $G_2 > G$

мис

Расчетная схема для определения приведенного модуля ячейки уплотненного слоя грунта толщиной *l*=*L* при G₂>G₁

$$O_2 > O_1$$

Изменение касательного напряжения по радиусу расчетной ячейки носит нелинейный характер и может быть представлен выражением:

$$\tau(r) = \tau_a \cdot \frac{(b-r)^2}{(b-a)^2}$$

Перемещение от сдвиговой деформации и сдвиговая деформация связаны следующим соотношением:

$$\frac{dS(r)}{dr} = -\gamma(r) \rightarrow \frac{dS(r)}{dr} = -\frac{\tau(r)}{G}$$

Максимальное перемещение имеет место на контакте колонны и уплотняемого грунта при r=a:

$$S(r)^{\max} = S(a) = \frac{\tau \cdot a \cdot (b - r)^3}{3G_1(b - a)^2} \bigg|_a^b = \frac{\tau_a(b - a)}{3G_1}$$

Отсюда максимальное касательное напряжение:

$$\tau_a = \frac{S(a) \cdot 3G_1}{(b-a)}$$

 $\tau_a = \frac{a}{2} \frac{d\sigma_z}{dz} \rightarrow \frac{d\sigma_z}{dz} = \frac{2}{a} \cdot \tau_a = \frac{2}{a} \frac{S(a) \cdot 3G_1}{(b-a)}$ $\sigma_z = E_c \cdot \frac{dS}{dz} \rightarrow \frac{d\sigma_z}{dz} = E_c \cdot \frac{d^2S}{dz^2}$ $\frac{d^2S}{dz^2} - \omega^2 S = 0 \qquad \omega^2 = \frac{6G_1}{a(b-a)E_c}$

Решение дифференциального уравнения имеет вид:

$$S(z) = C_1 \cdot e^{\omega z} + C_2 \cdot e^{-\omega z}$$

Для нахождения констант C₁ и C₂ используются граничные условия:

1) При z=0 $S(z) = S_0 = \sigma_0 \cdot \frac{\pi a(1 - \nu_2)}{4G_2} = \sigma_0 \cdot K_0$ Также $S_0 = C_1 + C_2$

2) При z=l
$$\frac{dS}{dz} = \frac{\sigma_c}{E_c}$$
 $\frac{\sigma_c}{E_c} = \omega (C_1 \cdot e^{\omega l} - C_2 \cdot e^{-\omega l})$

$$C_{1} = \left(\frac{\sigma_{c}}{\omega E_{c}} + \sigma_{0} \cdot K_{0} \cdot e^{-\omega l}\right) \cdot \frac{1}{e^{\omega l} + e^{-\omega l}}$$
$$C_{2} = \left(\sigma_{0} \cdot K_{0} \cdot e^{\omega l} - \frac{\sigma_{c}}{\omega \cdot E_{c}}\right) \cdot \frac{1}{e^{\omega l} + e^{-\omega l}}$$

Схема распределения напряжений вдоль элементарного объема колонны длиной dz

$$S(z) = \frac{\sigma_c}{\omega E_c} \left(\frac{e^{\omega z} - e^{-\omega z}}{e^{\omega l} + e^{-\omega l}} \right) + \sigma_0 \cdot K_0 \left(\frac{e^{-\omega l} \cdot e^{\omega z} + e^{\omega l} \cdot e^{-\omega z}}{e^{\omega l} + e^{-\omega l}} \right)$$
$$\sigma_c(z) = E_c \cdot \frac{dS}{dz} = \sigma_c \cdot \frac{\left(e^{\omega z} + e^{-\omega z}\right)}{e^{\omega l} + e^{-\omega l}} + \frac{\sigma_0 \cdot K_0 \cdot \omega \cdot E_c \left(e^{-\omega l} \cdot e^{\omega z} - e^{\omega l} \cdot e^{-\omega z}\right)}{e^{\omega l} + e^{-\omega l}}$$
$$\sigma_0 = \frac{2 \cdot \sigma_c}{e^{\omega l} + e^{-\omega l} + E_c \cdot K_0 \cdot \omega \left(e^{-\omega l} - e^{\omega l}\right)} \rightarrow \sigma_0 = \sigma_c \cdot A$$
$$A = \frac{2}{e^{\omega l} + e^{-\omega l} + E_c \cdot K_0 \cdot \omega \left(e^{-\omega l} - e^{\omega l}\right)}$$

На уровне верха щебеночной колонны имеет место равенство перемещений грунта под штампом и колонны, т.е.

$$S_{c}(l) = \frac{\sigma_{c}}{\omega E_{c}} \cdot \frac{e^{\omega l} - e^{-\omega l}}{e^{\omega l} + e^{-\omega l}} + \sigma_{0}K_{0} \cdot \frac{2}{e^{\omega l} + e^{-\omega l}}$$
$$S_{c}(l) = m_{c} \left(pl - \frac{\lambda}{1 - \lambda} \left(\frac{\sigma_{c}}{\omega} \cdot \frac{e^{\omega l} - e^{-\omega l}}{e^{\omega l} + e^{-\omega l}} + \sigma_{0} \cdot K_{0} \left(\frac{2}{e^{\omega l} + e^{-\omega l}} - 1 \right) \right) \right)$$

$$E = \frac{e^{\omega l} - e^{-\omega l}}{\omega E_c \left(e^{\omega l} + e^{-\omega l}\right)} + \frac{A \cdot K_0 \cdot 2}{\left(e^{\omega l} + e^{-\omega l}\right)}$$

 $D = \frac{e}{B + A \cdot \omega \cdot K_0 \cdot C}$

Приведенный коэффициент относительной сжимаемости:

$$\overline{m} = \frac{D \cdot E}{l}$$

$$B = \frac{1}{E_{c}} \cdot \frac{e^{\omega l} - e^{-\omega l}}{e^{\omega l} + e^{-\omega l}} + \frac{m_{2} \cdot \lambda}{1 - \lambda} \cdot \frac{e^{\omega l} - e^{-\omega l}}{e^{\omega l} + e^{-\omega l}}$$

$$C = \frac{2}{e^{\omega l} + e^{-\omega l}} + \frac{m_{2} \cdot \lambda}{1 - \lambda} \cdot \frac{\left(2 - e^{\omega l} - e^{-\omega l}\right)}{e^{\omega l} + e^{-\omega l}}$$

Численное моделирование уплотнения основания

Конечно-элементная схема и изополя вертикальных перемещений

30

ССЛЕДОВАТЕЛЬСКИ

расчетной ячейки

Конечно-элементная схема и изополя вертикальных перемещений

31

приведенного массива

Расчетная схема для определения осадки преобразованного массива грунта колоннами уплотнения

Моделирование различий в форме поперечного сечения

Сравнение конечно-элементных расчетов для щебеночных колонн уплотнения круглого и квадратного сечения одинаковой площади поперечного сечения

методами

Моделирование процесса расширения скважины численными

Распределение горизонтальных напряжений

Распределение вертикальных напряжений

ИССЛЕДОВАТЕЛЬСКИ ми с и

38

Напряжения по Х

Напряжения по Ү

национальный исследовательский университет МИСИ

39

Изменение физико-механических параметров грунта

ий индекс	ели	Наименование грунта по ГОСТ 25100-2011	Наименование участка	Шлотность грунта, г/см ³	Плотность сухого грунта П _d . r/cm ³	Коэффициент пористости е, д ед.	Показатель текучести I _L , д. ед.	Угол внутреннего трения φ, °		Удельное сцепление С, кПа		Модуль деформации Е, МПа		
Стратиграфически								По результатам статического зондирования	По результатам лабораторных испытаний	По результатам статического зондирования	По результатам лабораторных испытаний	По результатам статического зондирования	По результатам лабораторных испытаний	По результатам штамповых испытаний
bQ _{IV}	26	Глина	Естественное залегание	1,62	0,99	1,637	0,99	15	14	27	28	5	2	-
			Участок 1	1,81	1,37	0,977	0,40	17	17	32	47	11	-	-
			Участок 2	1,50	1,01	1,698	0,73	15	25	28	10	6		表的
	2в	Суглинок	Естественное залегание	1,80	1,36	0,958	0,76	17	28	16	4	5	8	, =0
			Участок 1	1,79*	1,24	1,170*	0,38	21	-	23	-	14	-	-
			Участок 2	1,79	1,31	1,045	0,71	16	-	14	-	4	-	-
	5a	Глина	Естественное залегание	1,87	1,43	0,893	0,28	20	21	41	49	22	17	-
			Участок 1	не вскрыт										
			Участок 2	не вскрыт										
	5в	Суглинок	Естественное залегание	1,72	1,22	1,181	0,39	20	19	20	148	11	12	4
			Участок 1	1,75	1,27	1,113	0,20	25	36	39	37	32	15	-
sto			Участок 2	1,75	1,24	1,152	0,47	23	-	30	-1	22	17	-0
a Qiv	5г	Суглинок	Естественное залегание	1,90	1,45	0,856	0,86	16	21	14	26	4	9	4
			Участок 1	2,03	1,68	0,602	0,26	23	26	30	24	22	31	10
			Участок 2	1,93	1,50	0,790	0,58	21	21	22	31	13	15	13
	5д	Супесь	Естественное залегание	2,07	1,70	0,584	0,74	19	32	18	22	9	27	3
			Участок 1	2,11	1,79	0,488	0,08	23	-	31	-	24	-	-
			Участок 2	не вскрыт										
	22	Глина	Естественное залегание	1,73	1,24	1,115	0,15	25	34	53	17	39	-	-
K ₂ s			Участок 1	не вскрыт										
			Участок 2	1,72	1,22	1,200	0,18	-	-	-	-	.=:	29	
Значения отмеченные * - средние по двум образцам														

Таблица 1 – Результаты сопоставления нормативных значений физико-механических свойств грунтов по данным компании-подрядчика

Изменение физико-механических параметров грунта

ины ги, м	частка	Влажность, д.е.	Плотность грунта, г/см ³	Плотность сухого грунта ρ _d , г/см ³	Коэффицие нт пористости е, д. ед.	Угол внутреннего трения φ, °		Удельное сцепление с, кПа		Модуль деформации Е, МПа	
Уровень глуб от поверхнос	Наименование у					По результат ам трехосны х испытани й	По результат ам одноплос костного среза	По результат ам трехосны х испытани й	По результат ам одноплос костного среза	По результат ам трехосны х испытани й	По результат ам компресс ионных испытани й
6	До уплотнения	0,557	1,88	1,21	1,228	-	18,26	-	1,42	8,22	-
	После уплотнения	0,444	1,79	1,24	1,170	20,7	15,51	47,5	39,49	12,58	4,11
8	До уплотнения	0,246	1,96	1,57	0,710	-	19,85	-	28,56	7,47	-
	После уплотнения	0,27	1,9	1,50	0,798	29,3	20,3	51,7	21,91	17,49	3,53
10	До уплотнения	0,358	1,81	1,33	1,018	-	19,37	-	23,3	22,06	-
	После уплотнения	0,237	1,97	1,59	0,689	31,5	24,48	40,76	14,58	26,05	5,55
12	До уплотнения	0,408	1,65	1,17	1,295	-	18,82	-	52,86	6,91	-
	После уплотнения	0,293	1,88	1,45	0,850	30,7	17,78	58,4	159,43	24,6	3,52
Среднее*	До уплотнения	0,425	1,86	1,31	1,061	-	19,2	-	23,76	10,57	-
	После уплотнения (норм)	0,316	1,89	1,44	0,873	28,45	19,29	49,47	63,0	21,91	3,99
	После уплотнения (α=0,85)	-	-	-	-	16,34	11,29	28,41	36,89	19,1	3,6
	После уплотнения (α=0,95)	-	-	-	-	15,39	10,49	26,76	34,25	17,31	3,32

*- средние значения параметров прочности получены путем обработки всех экспериментальных данных как единой совокупности по ГОСТ 20522-2012

Таблица 2 – Результаты сопоставления нормативных значений физико-механических свойств грунтов по данным НОЦ «Геотехника» НИУ МГСУ

Деформационные характеристики колонн уплотнения на площадке

Штамповые испытания щебня грунтовых свай плоским штампом площадью 600 см2 в теле свай на глубине семь метров, на абсолютной отметке 144,00.

Глубина проведения опыта h, м	Наименование грунта	Значение модуля деформации E, МПа	Среднее значение модуля деформации E, МПа
7,0		120,5	
7,0		106,92	
7,0	Щебень	104,3	140 50
7,0	грунтовой сваи	146,7	140,52
7,0		158,15	
7,0		206,57	

Технологические и геометрические параметры уплотнения

Геометрические параметры уплотнения:

с и

- 1. Диаметр колонн (конечный)
- 2. Шаг колонн.
- 3. Длина колонн.
- 4. Последовательность выполнения

Типовые схемы расположения колонн уплотнения и последовательность их выполнения

ССЛЕДОВАТЕЛЬСКИ си ми Технологические и геометрические параметры уплотнения Технологические параметры уплотнения: для упрощения инструмент расчётов 1 nozp ћизвл. hизвл. hyч. hyч. V_{упл.} V_{упл.} V_{неупл.} 252

Схема расчета технологических параметров

Изополя вертикальных перемещений массива грунта на стадии полного завершения строительства зданий с учетом технологической нагрузки на отметке планировки, равной 10 кПа, мм

Инженерно-геологические условия морского порта

50

Принципиальный вид кривых зависимости вертикальных перемещений (м) от времени (сут.)системы "дрена - окружающий слабый грунт" без учёта (1) и с учётом (2) преобразования слоя слабого грунта полученные с помощью численного моделирования консолидации

Изополя избыточного порового давления на этапе окончания консолидации после устройства песчаной насыпи и свай-дрен

-700,00

-750,00

52

свая-дрена

 $\sigma_c \cdot m_c = \sigma_c \cdot m_c = \sigma \cdot \overline{m}$ - Исходные предпосылки $N = N_c + N_c$ $N = \sigma \cdot \pi \cdot R_c^2$ - сосредоточенная сила нагружения $N_c = \sigma_c \cdot \pi \cdot R_c^2$ - нагрузка, передающаяся на колонну $N_c = \sigma_c \cdot \pi \cdot R_c^2$ - нагрузка на грунт между колоннами.

Совместное решение представленных выше уравнений дает следующее соотношение для приведенного относительного коэффициента сжимаемости расчетной ячейки:

$$\overline{m} = \frac{m_{\mathcal{E}} \cdot m_{c}}{\lambda \cdot m_{\mathcal{E}} + m_{c} (1 - \lambda)}$$

 $\lambda = \frac{R_c^2}{R_c^2} = \frac{0.6^2}{1,025^2} = 0,3427 \quad m_c = \frac{0.8}{4} = 0.2 (1/\text{MIDa}), \quad m_c = \frac{0.8}{263} = 0.00304(1/\text{MIDa}),$ $\overline{m} = \frac{0.2 \cdot 0.00304}{0.3427 \cdot 0.2 + 0.00304 \cdot (1 - 0.3427)} = \frac{0.000608}{0.07154} = 0.00849 (1/\text{MIDa}),$ $E_{npue} = \frac{0.8}{0.00849} = 94.23 (\text{MIDa}), \quad \text{среднее значение приведенного модуля} \text{$ **55** $}$

Изополя вертикальных перемещений фундаментной плиты с учетом закрепления слоя слабого грунта, мм

Тер-Мартиросян Армен Завенович кандидат технических наук, доцент кафедры МГиГ НИУ МГСУ, Руководитель НОЦ «Геотехника» НИУ МГСУ, 129337, г. Москва, Ярославское шоссе, д. 26, e-mail: gic-mgsu@mail.ru

