

Государственная корпорация по атомной энергии «Росатом» **АО «Атомтехэнерго»**

Нововоронежский филиал «Нововоронежатомтехэнерго»

Возможности применения новых технологий при выполнении ПНР на энергоблоках АЭС с ВВЭР на примере физических и динамических испытаний

Саунин Юрий Васильевич

Зам. начальника ЦФДИ, к.т.н.

2-ая НПК СРО атомной отрасли «АтомСтройСтандарт-2015» «Новые технологии сооружения объектов использования атомной отрасли» г. Москва, 25 сентября 2015 г.

План презентации

Введение (Информационные технологии (ИТ), жизненный цикл АЭС, эволюция в методах и средствах ПНР)

Процесс ввода блока АЭС с ВВЭР в эксплуатацию (этапы и подэтапы, основные виды ПНР)

Физические и динамические испытания (ФДИ) в составе ПНР (процессы, особенности, структура)

Постановка и цели решения задачи использования новых технологий (создание APM инженера-наладчика с новыми возможностями ИТ, принципиальное изменение технологии ПНР в части ФДИ)

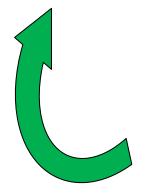
Состояние проблемы (обзор специализированных ПТК, ПО и т.д.)

Предполагаемое решение и ожидаемые эффекты

Заключение

Введение

Протоколом заседания Комиссии при Президенте РФ по модернизации и технологическому развитию экономики России № 3 от 31 августа 2009 г. утвержден перечень проектов по направлению «Развитие суперкомпьютеров и грид-технологий»

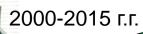

цели, в том числе

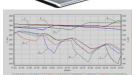
Разработка, создание и внедрение на базовых предприятиях атомной энергетики методов комплексного имитационного моделирования на суперЭВМ сложных технических объектов и систем, т.е. создание системы сквозного замкнутого компьютерного моделирования работы ядерных энергетических установок и АЭС в целом, включая моделирование аварийных ситуаций и их последствий

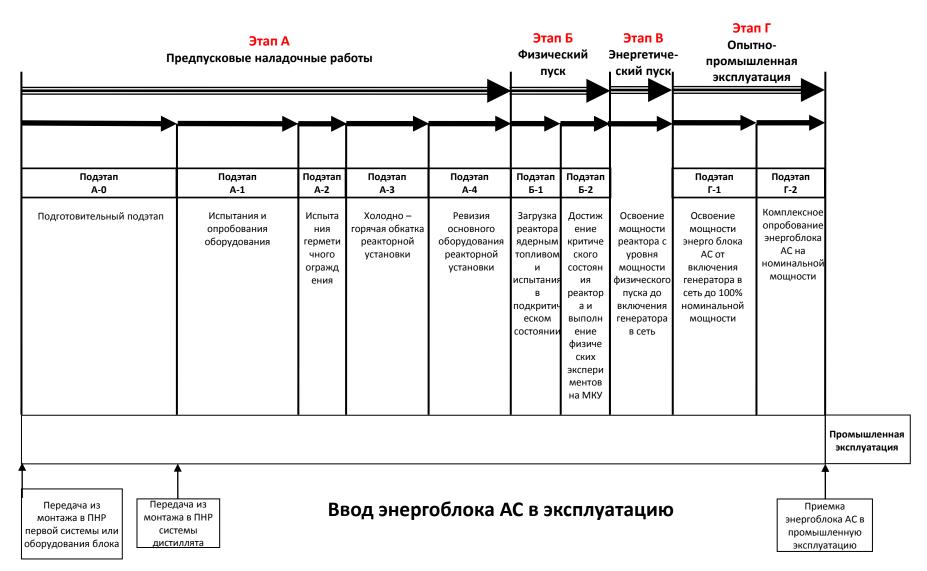
позволит, в том числе

- повысить качество проектно-конструкторских работ;
- сократить стоимость и сроки проектирования ЯЭУ, как следствие, обеспечить повышение **экономической конкурентоспособности** проектируемых ЯЭУ;
- повысить **безопасност**ь эксплуатации ядерных энергетических установок различного назначения;
- сократить затраты при сопровождении объектов атомной энергетики **На** всех этапах их жизненного цикла.

Введение (продолжение)







Процесс ввода ЭБ АС с ВВЭР в эксплуатацию

Процесс ввода ЭБ AC с ВВЭР в эксплуатацию (продолжение)

Основные виды ПНР

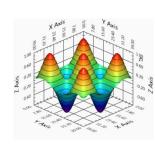
□ ПНР	на	технологических	системах					
и оборудовании								
□ ПНР	на	электротехнических	системах					
и оборудовании								
□ ПНР на АСУ ТП								
 ✓ Физические и динамические испытания (ФДИ) 								

ФДИ – натурные проверки и испытания, которые проводятся с целью подтверждения проектных физических, теплогидравлических характеристик и исследования поведения РУ и блока АЭС в целом в стационарных и переходных режимах, в том числе вызванных отключением основного технологического оборудования энергоблока.

Наименование ФДИ	Группа ФДИ	Этапы и подэтапы ПНР	Требуемые режимы и состояния
Определение теплогидравлических характеристик 1-го	ТФИ	ХГО, ФП, все осваиваемые	все возможные сочетания с работающими и
контура		уровни мощности ЭП и ОПЭ	отключенными ГЦН
Определение теплового баланса реакторной установки	ТФИ	все осваиваемые уровни	стационарные состояния с 4-мя, 3-мя и 2-мя
по 1-му и 2-му контуру		мощности ОПЭ	работающими ГЦН
Определение температурного поля теплоносителя на	ФИ СВРК	ХГО, ФП	расхолаживания через каждый работающий
входе в активную зону			ПГ в состояниях с 4-мя, 3-мя и 2-мя
			работающими ГЦН
Проверка соответствия координат СВРД в активной	ФИ СВРК	ОПЭ освоение уровня	опускание и подъем отдельных выбранных
зоне координатам СВРД, отображаемым в СВРК		мощности (40-50) % Ном	ОР СУЗ
Проверка АКНП в части контроля мощности	ФИ АКНП	ФП, все осваиваемые уровни	стационарные состояния на всех
		мощности ЭП и ОПЭ	осваиваемых уровнях мощности
Первый вывод реактора в критическое состояние	РФИ	ФΠ	подъем групп ОР СУЗ, водообмен 1-го
			контура
Проверка режима подключения петли к 2-м и 3-м	РФИ	ОПЭ освоение уровней	состояния с 4-мя, 3-мя и 2-мя работающими
работающим		мощности 75, 100 % Ном	ГЦН
Определение асимметрии размножающих свойств	ФИ НФХ	ФΠ	стационарное состояние
активной зоны			
Определение температурного коэффициента	ФИ НФХ	ФП, ОПЭ освоение уровней	стационарные и квазистационарные
реактивности		мощности 40, 75, 100 % Ном	состояния
Проверка характеристик свободных аксиальных	ФКИ	ОПЭ, освоение уровней	стационарные и квазистационарные
ксеноновых колебаний		мощности 50, 75 % Ном	состояния в начале и в конце кампании
Испытания алгоритма подавления ксеноновых	ФКИ	ОПЭ, освоение уровней	режимы после отключений основного
колебаний		мощности 75, 100 % Ном	оборудования
Испытания при отключении одного ГЦН из 4-х	ДИ	ОПЭ, освоение уровней	переходные режимы при отключении одного
работающих и одного ГЦН из 3-х работающих		мощности 50, 75, 100 % Ном	ГЦН
Сброс нагрузки турбогенератора закрытием стопорных	ДИ	ОПЭ, освоение уровней	переходные режимы при закрытии СК ТГ с
клапанов		мощности 100, 100 % Ном	работой и без работы БРУ-К

Процессы и особенности ПНР в части ФДИ (продолжение)

Разработка ПНД


необходимость использования большого объема информации из **разнообразной документации** (нормативной, проектной, эксплуатационной, отчетной, научно-технической и т.д.);

Подготовка и проведение испытаний

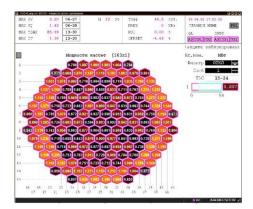
- ▶ необходимость разработки специального ПО для обработки результатов испытаний с учетом специфики конкретных испытаний (теплофизические, теплогидравлические, комплексные физические испытания СВРК и АКНП, определение нейтронно-физических характеристик активной зоны, динамические испытания РУ и энергоблока);
- ▶ необходимость проведения прогнозных расчетов;
- > необходимость разработки «сценариев» для динамических испытаний.

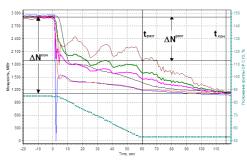
□ Обработка полученных результатов испытаний

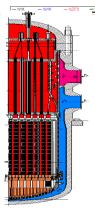
- **большой объем** разнотипной исходной информации (аналоговые, дискретные, расчетные параметры, уставки, константы и коэффициенты алгоритмов контроля и управления и др.) практически по всем системам энергоблока, регистрируемой на разных штатных и нештатных системах за большие периоды с минимально возможной частотой;
- необходимость **визуализации** большого объема исходной информации, использование опыта аналогичных испытаний на предыдущих этапах и на других энергоблоках;
- необходимость сопоставления с модельными расчетами по реализованным состояниям;
- сжатые сроки предоставления отчетно-сдаточной документации.

АРМ - комплекс аппаратных и программных средств, обеспечивающих оперативное удовлетворение информационных и вычислительных потребностей специалиста, размещенных на его рабочем месте

АРМ конструктора АРМ оператора АРМ проектировщика


АРМ инженера-наладчика физика

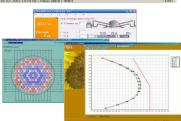



Задача — принципиальное изменение технологии ПНР, автоматизация процесса работы инженера-наладчика физика при вводе в эксплуатацию энергоблоков с ВВЭР в ходе подготовки, проведения и сопровождения сложных и трудоемких физических, теплогидравлических и динамических испытаний

Цели решения задачи

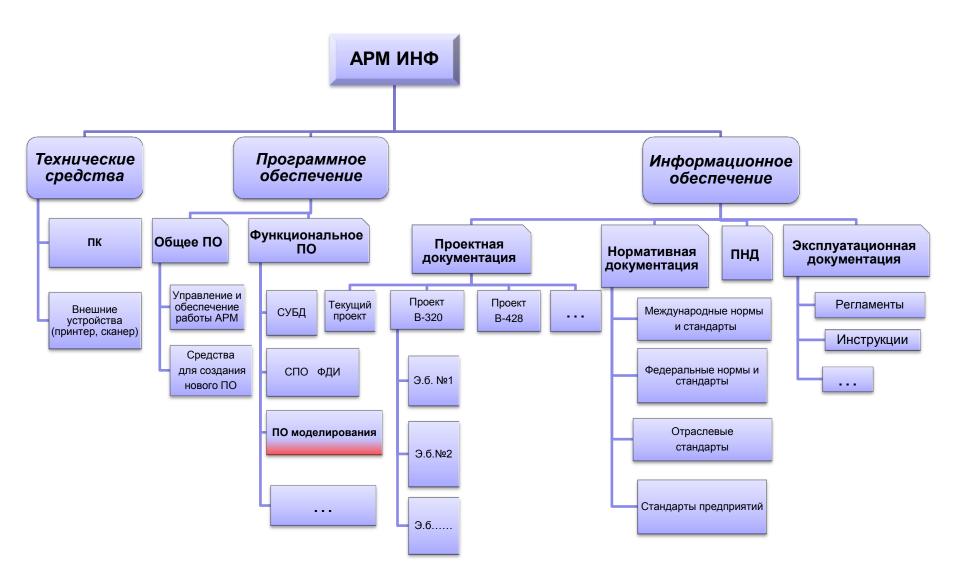
- анализ возможностей, разработка и системное внедрение в процесс ввода в эксплуатацию энергоблоков АЭС с ВВЭР современных информационных технологий, программно-технических комплексов специализированных под задачи ПНР с включением воозможностей компьютерного моделирования;
- □ оптимизация **пусконаладочных режимов и объемов работ** при вводе в эксплуатацию энергоблоков АЭС с ВВЭР;
- □ более корректный учет в штатных СКУ энергоблоков АЭС с ВВЭР ряда наблюдаемых явлений и эффектов, повышающих неопределенность контролируемых параметров и неоднозначность оценок протекающих в РУ процессов;
- □ использование полученного опыта при эксплуатации АРМ ИНФ для внедрения специализированного программного обеспечения в штатные системы контроля в качестве сервисных функций и его использования в режиме «on-line»;
- повышение конкурентоспособности.

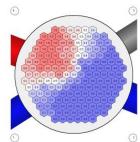
Состояние проблемы

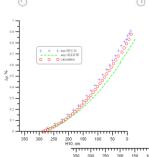


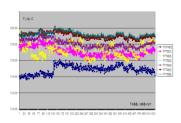
(<mark>СЭК</mark>), контроля системы специальные экспериментального (<u>СИК</u>), измерительные комплексы аппаратурно-программные $(A\Pi \mathbf{NK})$ проведения физических измерительные комплексы ДЛЯ динамических испытаний, выполненные разными изготовителями в разных конфигурациях для разных энергоблоков (ГНЦ ФЭИ, НИЦ КИ, ВНИИАЭС, НВАТЭ), используемые коды при проектировании и конструировании;

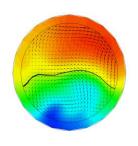
- □ программно-технические комплексы для обработки СПНИ (ОКБ ГП);
- □ программа <u>ИР</u> в составе штатного ПО СВРК нового поколения (НИЦ КИ);
- **специализированное** программное обеспечение для обработки комплексных испытаний СВРК и динамических испытаний (НВАТЭ);


- ¬ аналитические тренажеры (ВНИИАЭС, НИЯУ МИФИ и др.);
- опытные разработки <u>систем поддержки оператора</u> и рабочих станций контролирующих физиков (НИЦ КИ, ВНИИАЭС, ОЯБиН АЭС);
- □ зарубежные разработки систем экспериментального контроля при вводе в эксплуатацию и эксплуатации АЭС (ВУЙЕ и т.д.);


□ опыт сотрудничества и перспективы сотрудничества с разработчиками и пользователями программных комплексов с возможностями моделирования процессов и оборудования АЭС (ХФТИ, АЭП, НИЦ КИ, ОКБ ГП, НИТИ им. Александрова и др.)


Предполагаемая принципиальная структура

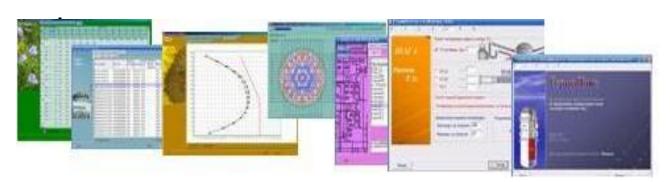


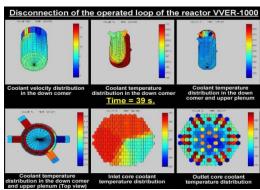


Предполагаемые методы и этапы создания АРМ ИНФ

- □ **Анализ и систематизация** опыта использования технических средств, специализированного и общего ПО при различных видах ФДИ;
- □ Анализ возможностей использования ПО автоматизации построения пространственных моделей основных элементов РУ на основе системных кодов, используемых при обоснованиях безопасности и других целей (ATHLET, KOPCAP и др.) для целей ФДИ
- □ Обучение специалистов АТЭ работе с системными кодами:
 - **верификация расчетных моделей** на натурных экспериментальных данных, полученных специалистами АТЭ при вводе в эксплуатацию энергоблоков ВВЭР-1000 различных проектов в стационарных и переходных режимах;
 - **создание функционального ПО** для разработки сценариев развития технологических процессов и работы основного оборудования РУ к проведению сложных общеблочных испытаний.
- □ Анализ возможностей **практического использования** результатов модельных расчетов для повышения **представительности выходной информации** СВРК и других СКУ, обеспечивающих безопасность и экономичность эксплуатации РУ;
- □ Интеграция различных составных частей и разработка специализированного ПО для АРМ ИНФ на базе выбранных и протестированных программных продуктов.

Ожидаемые эффекты и перспективы


Наименование процессов	Объекты использования	Качественный эффект	Количественный эффект
Разработка ПНД. Подготовка испытаний	Программы и методики проведения испытаний. Специализированное программное обеспечение испытаний.	Возможность проработки вариантов проведения испытаний и выбора оптимальной методики при разработке ПНД. Возможность прогнозного анализа текущих условий проведения испытаний, разработки сценариев испытаний, построения графиков ожидаемого поведения основных параметров, учета особенностей выполнения аналогичных испытаний на других энергоблоках.	Сокращение трудозатрат на подготовку испытаний: > 2 человеко-дня на одно испытание; > до 60 человеко-дней на один вводимый в эксплуатацию энергоблок.
Проведение испытаний Выпуск отчетной документации	Расчетные процедуры оперативной обработки и представления результатов испытаний. Визуализация выходной информации. Алгоритмы анализа и обработки результатов испытаний	Повышение культуры безопасности при вводе в эксплуатацию за счет открывшейся возможности переноса и акцентирования внимания на комплексном анализе работы оборудования РУ и энергоблока, соблюдении требований правил, норм и стандартов в части обеспечения безопасности при проведении сложных общеблочных испытаний. Повышение качества и оперативности выпуска отчетной документации. Образование дополнительного резерва времени на принятие необходимых решений по результатам испытаний.	Снижение трудозатрат на расчетные процедуры и визуализацию выходной информации: > 0.5 человеко-дня на одно испытание; > до 30 человеко-дней на один вводимый в эксплуатацию энергоблок. Снижение трудозатрат на выпуск отчетной документации: > 3 человеко-дня на одно испытание; > до 90 человеко-дней на один вводимый в
Использование в штатных системах контроля и управления	Алгоритмы расчетов в штатных системах контроля и управления	Возможность совершенствования алгоритмов расчетов в штатных системах контроля и управления за счет внедрения разработанного программного обеспечения в штатные системы контроля в качестве сервисных функций и его использования в режиме «on-line». Обоснованное уточнение и корректировка весов мощностей, рассчитываемых разными способами в расчете основного контролируемого параметра с помощью СВРК - средневзвешенной мощности реактора Возможность практического использования результатов модельных расчетов для повышения представительности выходной информации СВРК и других СКУ, обеспечивающих безопасность и экономичность эксплуатации РУ.	эксплуатацию энергоблок. Снижение погрешности расчета средневзвешенной мощности реактора с 2% до 1-1.5%


<u>Итого:</u> На один вводимый в эксплуатацию энергоблок АЭС с ВВЭР применение новой технологии применения АРМ ИНФ должно обеспечить снижение трудозатрат на непосредственные пусконаладочные процедуры по физическим и динамическим испытаниям до 180 чел-дней с одновременным существенным повышением качества проводимых работ.

Заключение

- Использование возможностей современных ИТ с наибольшей эффективностью (на показанном примере проекта АРМ ИНФ для ФДИ) при проведении ПНР в процессе ввода в эксплуатацию энергоблоков АЭС является важной актуальной задачей по внедрению новых технологий.
- Новые технологии в виде APM с возможностями моделирования широко используются в научноисследовательских и проектно-конструкторских организациях отрасли, затраты на их создание и внедрение в практику окупаются

СПАСИБО ЗА ВНИМАНИЕ

www.atesvrk.narod.ru

E-mail: sauninyv@yandex.ru, atesvrk@yandex.ru

